
Comparing a Coevolutiona® Genetic Algorithm for

Mu!tiobjective Optimization

Jason D. Lohn i, William F. Kraus 2, Gary L. Haith 3

iComputational Sciences Division, MS,269-I

2QSS Group, Inc., MS 269-3

I'2NASA Ames Research Center, Moffett Field, CA, 94035 USA

3Narex Corp, Golden, CO, USA

{j10hn, bkraus}@email, arc. nasa. gov haith@stanf0rdalumni. 0rg

Abstract--We present results from a study compar-

ing a recently developed coevolutionary genetic algorithm
(CGA) against a set of evolutionary algorithms using a suite

of multiobjective optimization benchmarks. The CGA

embodies competitive coevolution and employs a simple,
straightforward target population representation and fit-

ness calculation based on developmental theory of learn-

ing. Because of these properties, setting up the additional

population is trivial making implementation no more diffi-

cult than using a standard GA. Empirical results using a

suite of two-objective test functions indicate that this CGA

performs well at finding solutions on convex, nonconvex,

discrete, and deceptive Pareto-optimal fronts, while giv-
ing respectable results on a nonuniform optimization. Or*

a multi*nodal Pareto front, the CGA finds a solution that

dominates solutions produced by eight other algorithms,

yet the CGA has poor coverage across the Pareto front.

I. INTRODUCTION

Cooperation and competition between populations of
organisms in nature has inspired researchers to incor-

porate coevolutionary dynamics into genetic algorithms.
The common element in these approaches is the inclusion
of one or more additional populations. A growing body

of research explores coevolutionary approaches that capi-
talize on this dynamic quality (for review, see [12]). This
coevolutionary work has largely concentrated on competi-
tive interactions. The interactions can be between individ-

uals that compete in a symmetric game-like context [13],
[15], or between populations of different types of individ-

uals that compete in predator/prey type relationships [5],
[10], [9], [6], [14]. In these cases, individuals are rewarded
if they defeat the individuals with which they compete.
These interactions can support "arms-races" in which the
individuals force each other to become increasingly com-

petent.
A few studies have investigated the role of cooperation

and how it can help solve some problems endemic to evo-
lutionary methods, like the difficulty of choosing an appro-

priate encoding for the individuals [ii] and the difficulty of
decomposing composite problems [2]. Other studies have
found that a balance of cooperation and competition is

necessary to prevent evolutionary algorithms from getting
trapped in local minima, or "Mediocre Stable States" [3].

In this paper we describe a coevolutionary genetic al-

gorithm (CGA) whose fitness calculations are inspired by

developmental theory. The fundamental idea is to use co-
evolutionary dynamics to automatically regulate the level

of difficulty, from easy to hard, posed by a population of
tests. We then describe multiobjective optimization prob-
lems and a suite of test functions that we use to judge the

performance of the CGA. Empirical results from the CGA
runs are presented and compared to previously-published
results.

II. COEVOLUTIONARY GA

The coevohtionary algorithm we present is based on

an algorithm used in previous evolvable hardware appli-
cations [7], [83, and is based on competition between two
populations. The population of candidate solutions, or

trial population, is represented and manipulated much the
same as the main population in a standard genetic algo-

rithm. The second population, or target population, con-
sists of target objective vectors (TOVs) - vectors contain-
ing targets for the individual objectives to be optimized.

An overview of the algorithm is presented in Figure 1.

The population of TOVs is used to encapsulate the level
of difficulty that the trim population faces. Under the con-
trol of the genetic algorithm, the TOVs evolve from easy

to difficult based on the level of proficiency of the trial
population. The algorithm designer need only specify two
TOVs: an easy TOV and a difficult TOV, the latter being

the ultimate goal of the run (analogous to stopping criteria
in standard evolutionary algorithms). The CGA seeds the
easy TOVs into early generations of the run to guarantee
that the coevolutionary dynamic will be used - as we shall

see, if all TOVs were too difficult for generation zero in-
dividuals, there would be no competitive mechanism and
hence no fitness feedback between populations.

Each TOV consists of a set of target objectives that act
like thresholds: allthresholds must be met or exceeded in

order for the TOV to be "solved," and hence gain fitness 1.

The general form of the fitness calculations are as follows.
Trial individuals are rewarded for solving difficult TOVs.
The most difficult TOV at a given generation is defined

1This all-or-nothing property can be relaxed to accommodate par-
tial solutions, however that version of the algorithm will be reported
on in future work.

trial population:
candidate solutions

target population:

%.

target objective
vectors

<fl, f2 frt _

<fl, f2 fn>

Fig. 1. Overview of coevolutionary genetic algorithm.

fe

o

@

o

@

L •

L

O, @

0
" '0

fl

Fig. 2. Example of Pareto front when minimizing two objectives
ft and f2. Nondominated solutions are represented as hollow
circles (o) and dominated solutions by filled circles (.).

to be the one that only one trial individual can solve.

Such a TOV garners the highest fitness score. TOVs that

are unsolvable, or are very easy to solve by the current

trial population, are given low fitness scores. Fitness of

individual in the trial population is computed as follows.

Individual i "plays" each TOV in the second population

and a score, si, is computed:

1
Si

2_., # trial

j_tov-'-_ individuals
that solve tovj

where tov_ is the set of TOV indexes such that individual

i solves tovj. Note that the denominator in the above

fraction is guaranteed to be greater than or equal to one

due to the restriction on j. Then s_ is normalized linearly

between its upper and lower bounds such that 0.0 is the

best score and 1.0 the worst:

F(trial individual/) = 1.0 - si/M 2

where 3//2 is the size of the TOV population. The effect

of s is to reward trial individuals that solve the more diffi-

cult TOVs. A TOV has the greatest difficulty level when

exactly one trial individual can solve it. If many trial

individuals can solve a particular TOV, the fitness contri-

bution in s is shared among the trial individuals [1@

Fitness of an individual TOV is computed as follows.

Let xy denote the number of trial individuals that solve

tovj, and M1 be the trial population size. The fitness is

essentially xj, scaled and normalized, with a tractability

constraint:

1.0 xj = 0
F(tov_) = 1

(xj-l.0) xj >_ I

The tractability constraint gives a target vector a score

of 1.0 (the "worst" score) when no trial individuals can

solve it. This puts pressure on the TOV population to pose

difficult, yet solvable problems to the trial population.

III. MULTIOBJECTIVE OPTIMIZATION

The notion of weighing tradeoffs is common to prob-

lems in everyday life, science, and engineering. Buying

a less expensive product might tradeoff product quality

for the ability to buy more of something else. Adding

an additional science instrument to a spacecraft trades

off increased costs for increased science return. Hard opti-

mization problems typically require many decisions on the

input side and many objectives to optimize on the output

side. The set of objectives forms a space where points

in the space represent individual solutions. The goal of

course is to find the best or optimal solutions to the opti-

mization problem at hand. Pareto optimality defines how

to determine the set of optimal solutions. A solution is

Pareto-optimM if no other solution can improve one ob-

jective function without a simultaneous deterioration of at

least one of the other objectives. A set of such solutions is

called the Pareto-optimal front. An example of a Pareto

front is seen in Figure 2.

Evolutionary algorithms (EAs) have recently attracted

much attention in the exploration of Pareto-optimal

fronts. It is claimed that EAs are the preeminent search

algorithms for such tasks [1@

Below we briefly touch on relevant terminology and def-

initions regarding multiobjective optimization problems

(following [161). The set of input parameters, or decision

variable, is called the decision vector. The set of objective

functions that measure the performance of the system is

called the objective vector. In an evolutionary algorithm

framework, a decision vector naturally corresponds to a

candidate solution, and the functions comprising the ob-

jective vector are typically incorporated, by various tech-

niques, into the fitness function(s).

A dominance test is a way to measure the relative per-

formance among decision vectors. Given two decision vec-

totsa andb, a dominates b if and only if a ties or ex-

ceeds b's performance on every objective, and there exists

at least one objective where a's performance strictly ex-

ceeds b's. Using this test, we can pare down any given set

of decision vectors and find the the set of nondominated

decision vectors. Such a set is said to form the nondomi-

nated front. If the nondominated set resulted from testing

every possible decision vector, then the nondominated set

is the Pareto-optimal front.

A coverage test adds a test for equality to the dominance

test. Given two decision vectors a and b, a covers b if and

only if a dominates b or a's objective vector is identical to

b's. The coverage test is used to compare two algorithms

as follows. The function C(A, B) computes the percentage

of algorithm B's solutions that are covered by solutions

produced by A.

The above tests (see [16] for formal definitions) are used

assess the ability of algorithms to optimize a set of de-

cision vectors. The dominance test will be used to cull

dominated solutions produced by a given algorithm. The

coverage test will be used to compare the solutions pro-

duced by algorithms head-to-head.

IV. EXPERIMENTAL SETUP

We follow the suite of multiobjective test functions

and empirical results presented in [16]. Briefly, there

were seven multiobjective evolutionary algorithms and

one random search algorithm executed on six test func-

tions. The algorithms compared in [16] were: random

search (RAND), Fonseca and Fleming's multiobjective

GA (FFGA), the Niched Pareto GA (NPGA), Hajela

and Lin's weighted sum approach (HLGA), the Vector

Evaluated GA (VEGA), the Nondominated Sorting GA

(NSGA), a single-objective EA using weighted-sum ag-

gregation (SOEA), and the Strength Pareto GA (SPEA).
The CGA described above is denoted COEV.

The test fimctions, T1 - T6, were chosen because they

provide a range of difficulties for multiobjective optimiza-

tion (e.g., multimodality, deception, isolated optima). In

each optimization, it is desired to minimize the objective

vector (fl,/o) by find its Pareto-optimal front.

To allow a direct comparison to the results in [161, we

followed the run setup as closely as possible: thirty CGA

runs were executed for each test function using the pa-

rameters shown in Table I. To compute the nondomi-

noted front for the CGA, we did the following. For each

CGA run, we collected all the output objective vectors

((fl, f2)) corresponding to the individuals evaluated dur-

ing the run. For each test fimction, the output objec-

tive vectors from five randomly-selected runs were com-

bined and a domination test removed all the dominated

soIutions. For the algorithm-to-algorithm coverage test

(function C described above), we used the results from the

thirty runs as follows. The nondominated set from each

run was computed. Then the domination test was per-

formed by pitting the nondominated set from algorithm

Number of generations

Trial population size

Target objective vector population size

Crossover rate (both populations)

Mutation rate (both populations)

TABLE I

COEVOLUTIONARY GA PARAMETERS.

25O

100

100

j0 j

A, run i, against the nondominated set from algorithm B,

run z. Statistics, in the form of boxplots (described be-

low), were computed using the resulting thirty C values.

Both C(A, B) and C(B, A) were computed as they may be
different.

V. RESULTS

As noted in the literature, comparing mu]tiobjective

optimization algorithms against each other can be diffi-

cult. One would like an algorithm to minimize the dis-

tance to the Pareto-optimal front and provide uniform

coverage of the Pareto-optimat front for a wide range of

values. Thus, comparisons become multiobjective opti-

mization problems themselves: is an algorithm that finds

a handful of Pareto-optimal solutions better than an al-

gorithm that finds a wide, uniform distribution of near

Pareto-optimal solutions? With this in mind we present

the experimental results.

Figures 3-8 show the results from the six test functions.

On each figure the optimal Pareto front is drawn as a

curve, data points for the eight comparison algorithms are

shown in gray 2, and the data points from the CGA runs

(COEV) are shown as black circles.

In general, the results show that the CGA is a rela-

tively strong performer: it always exceeds random search

and has qualitatively good performance against strong al-

gorithms such as SPEA and NSGA. On the first two test

functions, the CGA has the qualitatively best distribu-

tion and alignment to the Pareto-optimal curve. In the

third test function, it performs on par with SPEA. In the

fourth test function, a multimodal surface, the CGA has

poor coverage, yet find a solution that dominates nearly all

the others. On the deceptive test function, T_, the CGA

provides relatively excellent coverage except at low fl val-

ues, with SOEA doing better there. On the nonuniform

test function, T6, SPEA is the only algorithm to any find

Pareto-optimal solutions, and is able to span the width of

the front. However CGA provides near-optimal solutions,

with good coverage at high values of fz.

The head-to-head algorithm comparisons using the C

metric are shown in the boxplots of Figure 9. Each boxplot

2Data used to plot the curves from the non-coevolutionary runs

was obtained from the authors of [16]. Differences between the

curves in this paper and in [16] can be seen because the data was

sampled randomly.

3.5

21_. _C_ 0

0 0.1 0.2 0.3 04 0,5 06 0,7 08 09 1
fl

Fig. 3. Test function _ (convex).

,[;
4 _

x

35 - x

o

%
0 0 C

15 ' _ + i

'_ _ *.=, .=.

0 0,1 02 03 04 OS 06 07 08 09

fl

_2.

Fig. 4. Test function 7_ (nonconvex).

FFGA I

b. HLGA
NPGA

1_' NSGA
V SOEA
÷ VEGA

RAND

_: SPEA

x
x
x

×

contains results from each of the six test functions: the

dark dash is the median, the the top of the box is the

upper quartile, the bottom of the box is the lower quartile.

As can be seen, on all test functions the solutions found by
the CGA statistically cover the solutions found by RAND,

FFGA, NPGA, HLGA, and VEGA. The CGA's weakest
results are on T6 against NSGA, SOEA, SPEA.

VI. CONCLUSION

Multiobjective optimization is clearly one of the most

important class of problems in science and engineering.

Solution techniques that are effective at searching what

are typically vast search spaces, and finding a selection of
Pareto-optimal solutions are very desirable. In this paper

we presented a coevolutionary genetic Mgorithm inspired

by development learning theory, and compared it empir-

ically to seven other evolutionary search techniques for

multiobjective optimization. In terms of algorithm de-

01 0.2 03 04 05 06 0.7 08 09
fl

0

35
"30

3O

25

e¢

20

10

Fig. 5. Test function _3 (discrete).

FFGA
HLGA

NPGA
NSGA
SQEA

RAND

SPEA

o* 02 03 04 o_ o_ 07 o_ 09

,1

Fig. 6. Test function 3"_ (multimodal).

sign, CGA is no more difficult to design and implement

than a typical genetic algorithm. In fact, because the fit-

ness functions are identical across application domains,

implementation may be viewed as being easier. The re-

sults show that the CGA performed very well compared to

the other evolutionary algorithms and random search. On

four of the six functions, it could be argued that the CGA

qualitatively performed on par with or outperformed the

other algorithms. Missing from this study is a comparison

against traditional optimizing algorithms, which we leave

for future work.

VII. ACKNOWLEDGMENTS

This research was sponsored by the NASA InteLligent

Systems Program.

t*

×

2 ' _ .-. _;_ , x

0 5 10 15 20 25 3_

11

HLGA

it NPGA
_" NSGA

7 SOFA

: SPEA

Fig. 7. Test function 7_ (deceptive).

8 _ _ HLGA
NPGA

* NSGA

_ SOEA
7 _ + VEGA

× x _ RAND

_. x _ SPEA6

5

v t-.
v

o v_

0.3 04 05 06 0.7 OB 09 1

Fig. 8. Test function _ (nonuniform).

REFERENCES

[1] D. Cliff, G. Miller, Co-evolution of pursuit and evasion ii: Simu-
lation methods and results, From Animals to Animats ,_: Proc.
Fourth Intl. Conf. on Simulation of Adaptive Behavior, P.

Maes, M. Mataric, J. Meyer, J. Pollack, S. Wilson, (eds). MIT
Press Bradford Books, pp. 506-515, 1996.

[2] K. DeJong, M. Potter, Evolving Complex Structures via Coop-
erative Coevolution. Proc. Fourth Annual Conf. on Evolution-

ary Programming MIT Press, pp. 307-317, 1995.

I3] S.G. FicicJ, Challenges in coevolutionary learning: Arms-race

dynamics, open-endedness, and mediocre stable states, 1995.

[4] G.L. Haith, S.P. Colombano, J.D. Lohn, D. Stassinopoulos,
"Coevolution for Problem Simplification," Proc. i999 Genetic
and Evolutionary Computation Conference, 1999.

[5] D.W. Hillis, Co-evolving parasites improve simulated evolution
as an optimization procedure. Pages 313-324 of: Langton, C.,

Taylor, C., Farmer, J. D., Rasmussen, S. (eds), Artificial life 2,
vol. X. Redwood City, CA: AddisonWesIey, 1991.

[6] H. Jui]le, J. Pollack, "Coevolving the "ideal" trainer: Appli-
cation to the discovery of cellular automata rules," Proc. Third

Annual Genetic Programming Conf., 1998.

c(cosv, _) alg C(alg, COEV)

RAND

FFGA

NPGA

HLGA

VEGA

1 NSGA

Fig. 9. Boxplots showing statistics from 30 samples of the function

C comparing the CGA (COEV) to the other algorithms. Each
boxplot contains results from each of the six test functions: the

dark dash is the median, the the top of the box is the upper

quartile, the bottom of the box is the lower quartile.

[7] J.D. Lohn, G.L. Haith, S.P. Colombano, D. Stassinopoulos, "A

Comparison of Dynamic Fitness Schedules for Evolutionary De-

sign of Amplifiers," Proc. of the First NASA/DoD Workshop.
on Evolvable Hardware_ Pasadena, CA_ IEEE Computer Soci-

ety Press, 1999, pp. 87-92.

{8] J.D. Lohn, W.F. Kraus, D.S. Linden, S.P. Colombano_ "Evo-
lutionary Optimization of Yagi-Uda Antennas," Proc. of the

Fourth International Conference on Evolvable Systems, Y. Liu,

K. Tanaka, M. Iwata, T. Higuchi, M. Yasunaga (Eds.), Tokyo,
October 3-5, 2001, Springer-Verlag, pp. 236-243.

[9] J. Paredis, Coevolutionary constraint satisfaction. Pages 46-55
of: Proceedings of the third international conference on parallel

[10) d. Paredis, Steps towards co-evolutionary classification neural
networks. Pages 102-108 of: Brooks, R.., Maes, P. (eds), Artifi-
cial Life IV. Cambridge, MA: MIT Press, 1994.

[11] J. Paredis, The symbiotic evolution of solutions and their rep-
resentations. Pages 359-365 of: Eshelman, L. led), Proceedings
Of the sixth international conference on genetic algorithms. San

Mateo, CA: Morgan Kaufmann, 1995.

[12] J. Paredis, The handbook of evolutionary computation. Oxford
University Press. Chap. Coevolutionary Algorithms, 1998.

[13] J. Pollack, A. Blair, M. Land, "Coevolution of a backgammon
player," Proc. of Artificial Life 5, Langton, C. (ed), MIT Press,
1996.

[14] C.D. Rosin, R.K. Below, New Methods for Competitive Coevo-
lution, Tech. Rept. CS96-491, Department of Computer Science

and Engineering, University of California, San Diego, 1996.

[15] Rosin, Christopher D. Coevolutionary Search Among Adver-
saries. Ph.D. Thesis, University of California, San Diego, 1997.

[16] E. Zitzler, K. Deb, and L. Thiele, "Comparison of Multiobjec-
tire Evolutionary Algorithms: Empirical Results," Evolution-

ary Computation, 8(2), pages 173-195 , Summer 2000.

